به کارگیری مدل ترکیبی شبکه های عصبی مصنوعی با رگرسیون فازی با هدف پیش بینی قیمت طلا

Authors

مهدی خاشعی

مهدی بیجاری

abstract

یکی از مشکلات مهم در پیش بینی با شبکه های عصبی مصنوعی، فراهم کردن داده های لازم برای پیش بینی است؛ چرا که شبکه های عصبی برای حصول نتایج دقیق نیاز به داده های زیادی دارند. اما باید توجه داشت که جمع آوری داده های مورد نیاز شبکه، نخست، بسیار هزینه بر است و دوم، مدت زمان طولانی را طلب می کند. بنابراین با توجه به تغییرات سریع در محیط های واقعی و به ویژه سیستم های اقتصادی و مالی، پیش بینی در این گونه محیط ها نیازمند روش هایی است که با تعداد داده های قابل حصول کم نیز کارآمد و کارا باشند. روش های پیش بینی فازی، به دلیل استفاده از اعداد فازی به جای اعداد قطعی، نسبت به سایر روش های مشابه به داده های کمتری نیاز داشته، اما عملکرد آنها همیشه رضایت بخش نیست. در این مقاله برای بر طرف کردن محدودیت تعداد داده های مورد نیاز شبکه و حصول نتایج دقیق تر برای پیش بینی قیمت طلا، مدل ترکیبی شبکه های عصبی مصنوعی با رگرسیون فازی پیشنهاد شده است. نتایج تجربی بیانگر کارآمدی این روش در پیش بینی قیمت طلا است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

به کارگیری مدل ترکیبی شبکه‌های عصبی مصنوعی با رگرسیون فازی با هدف پیش‌بینی قیمت طلا

یکی از مشکلات مهم در پیش‌بینی با شبکه‌های عصبی مصنوعی، فراهم کردن داده‌های لازم برای پیش‌بینی است؛ چرا که شبکه‌های عصبی برای حصول نتایج دقیق نیاز به داده‌های زیادی دارند. اما باید توجه داشت که جمع‌آوری داده‌های مورد نیاز شبکه، نخست، بسیار هزینه‌بر است و دوم، مدت زمان طولانی را طلب می‌کند. بنابراین با توجه به تغییرات سریع در محیط‌های واقعی و به ویژه سیستم‌های اقتصادی و مالی، پیش‌بینی در این‌گونه...

full text

پیش بینی دامنه تغییرات طلا با استفاده از مدل ترکیبی ARIMA و شبکه عصبی

مدل خودرگرسیو میانگین متحرک انباشته (ARIMA) که تحت عنوان روش باکس و جنکینزشناخته می‌شود، یکی از پرکاربردترین مدل‌ها در پیش‌بینی سری‌های زمانی است. اما پیش­ فرض اصلی این مدل خطی بودن سری­های زمانی می­باشد. از سوی دیگر شبکه­ی عصبی یک تخمین زننده­ی عمومی است که الگو­های غیر خطی را بسیار خوب مدل­سازی می­نماید. دانستن الگوی داده­ها مبنی بر خطی و غیر خطی بودن در واقعیت کمی دشوار است، بنابراین این اید...

full text

مدل ترکیبی شبکه های عصبی مصنوعی پیش خور و خود سازمانده کوهونن برای پیش بینی قیمت سهام

این مقاله ضمن ارائه مدلی ترکیبی از شبکه های عصبی مصنوعی، به بررسی توان پیش بینی کنندگی آنها در مقایسه با مدل های منفرد می پردازد. در این بررسی، با استفاده از شبکه های عصبی ترکیبی متشکل از شبکه های پیش خور و خود سازمانده کوهونن اقدام به پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام در بازار بورس تهران نشان می دهد ...

full text

پیش بینی قیمت سهام با استفاده از شبکه عصبی فازی مبتنی برالگوریتم ژنتیک و مقایسه با شبکه عصبی فازی

In capital markets, stock price forecasting is affected by variety of factors such as political and economic condition and behavior of investors. Determining all effective factors and level of their effectiveness on stock market is very challenging even with technical and knowledge-based analysis by experts. Hence, investors have encountered challenge, doubt and fault in order to invest with mi...

full text

مقایسه قدرت پیش بینی روش شبکه عصبی مصنوعی با سایر روش های پیش‏بینی: مورد قیمت چغندرقند

این مطالعه با هدف پیش­بینی قیمت اسمی و واقعی چغندرقند و مقایسه روش شبکه عصبی مصنوعی با سایر روش­ها صورت گرفت. پس از بررسی ایستایی سری­ها، تصادفی بودن متغیرها با استفاده از دو آزمون ناپارامتریک والد- ولفویتز و پارامتریک دوربین- واتسون بررسی شد. براساس نتایج این آزمون­ها سری قیمت اسمی چغندرقند به‏عنوان سری غیرتصادفی و قابل پیش­بینی و سری قیمت واقعی به‏عنوان سری تصادفی ارزیابی شد. دوره مطالعه نیز ...

full text

پیش بینی قیمت سهام با روش رگرسیون فازی

در پیش بینی قیمت سهام، روش های گوناگونی به کار رفته است، اما هیچ کدام از آن ها نمی تواند، به تمام متغیّرهای شرکت کننده در برآورد مدل قیمت سهام و اثر هر یک از آن ها و حل خطای مدل بپردازد. اکثر حوزه های پیش بینی در روش های کلاسیکی، چون ARIMA و روش های نوینی، چون شبکه های عصبی برای قیمت سهام قرار دارند. در این پژوهش به روشی دست یافته شده که حاصل ادغام رگرسیون معمولی و رگرسیون فازی به همراه بهینه س...

full text

My Resources

Save resource for easier access later


Journal title:
نشریه مهندسی صنایع

Publisher: پردیس دانشکده های فنی

ISSN 2423-6896

volume 44

issue 1 2010

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023